Parameter optimization of improved fuzzy c-means clustering algorithm for brain MR image segmentation
نویسندگان
چکیده
A traditional approach to segmentation of magnetic resonance (MR) images is the fuzzy c-means (FCM) clustering algorithm. The efficacy of FCM algorithm considerably reduces in the case of noisy data. In order to improve the performance of FCM algorithm, researchers have introduced a neighborhood attraction, which is dependent on the relative location and features of neighboring pixels. However, determination of degree of attraction is a challenging task which can considerably affect the segmentation results. This paper presents a study investigating the potential of genetic algorithms (GAs) and particle swarm optimization (PSO) to determine the optimum value of degree of attraction. The GAs are best at reaching a near optimal solution but have trouble finding an exact solution, while PSO’s-group interactions enhances the search for an optimal solution. Therefore, significant improvements are expected using a hybrid method combining the strengths of PSO with GAs, simultaneously. In this context, a hybrid GAs/PSO (breeding swarms) method is employed for determination of optimum degree of attraction. The quantitative and qualitative comparisons performed on simulated and real brain MR images with different noise levels demonstrate unprecedented improvements in segmentation results compared to other FCM-based methods.
منابع مشابه
High Performance Implementation of Fuzzy C-Means and Watershed Algorithms for MRI Segmentation
Image segmentation is one of the most common steps in digital image processing. The area many image segmentation algorithms (e.g., thresholding, edge detection, and region growing) employed for classifying a digital image into different segments. In this connection, finding a suitable algorithm for medical image segmentation is a challenging task due to mainly the noise, low contrast, and steep...
متن کاملHigh Performance Implementation of Fuzzy C-Means and Watershed Algorithms for MRI Segmentation
Image segmentation is one of the most common steps in digital image processing. The area many image segmentation algorithms (e.g., thresholding, edge detection, and region growing) employed for classifying a digital image into different segments. In this connection, finding a suitable algorithm for medical image segmentation is a challenging task due to mainly the noise, low contrast, and steep...
متن کاملMR Brain Image Segmentation Using an Improved Kernel Fuzzy Local Information C-Means Based Wavelet, Particle Swarm Optimization (PSO) Initialization and Outlier Rejection with Level Set Methods
This paper, presents a new image segmentation method based on Wavelets, Particle Swarm Optimization (PSO) and outlier rejection caused by the membership function of the kernel fuzzy local information c-means (KFLICM) algorithm combined with level set is proposed. The segmentation of Magnetic Resonance (MR) images plays an important role in the computer-aided diagnosis and clinical research, but...
متن کاملA Novel Fuzzy-C Means Image Segmentation Model for MRI Brain Tumor Diagnosis
Accurate segmentation of brain tumor plays a key role in the diagnosis of brain tumor. Preset and precise diagnosis of Magnetic Resonance Imaging (MRI) brain tumor is enormously significant for medical analysis. During the last years many methods have been proposed. In this research, a novel fuzzy approach has been proposed to classify a given MRI brain image as normal or cancer label and the i...
متن کاملOPTIMIZATION OF FUZZY CLUSTERING CRITERIA BY A HYBRID PSO AND FUZZY C-MEANS CLUSTERING ALGORITHM
This paper presents an efficient hybrid method, namely fuzzy particleswarm optimization (FPSO) and fuzzy c-means (FCM) algorithms, to solve the fuzzyclustering problem, especially for large sizes. When the problem becomes large, theFCM algorithm may result in uneven distribution of data, making it difficult to findan optimal solution in reasonable amount of time. The PSO algorithm does find ago...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Eng. Appl. of AI
دوره 23 شماره
صفحات -
تاریخ انتشار 2010